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(f) My current research interest:

My current research deals with analytical validation of various types of partial differential equation models
that arise from industrial, engineering, and biological applications. For it to be valid, a mathematical model
must have a physically meaningful solution, and we concern ourselves with the existence of such a solution.
The existence assertion usually involves three steps:

1. a prior estimates;

2. approximation schemes;

3. convergence.

In the first step, one assumes that the model under consideration has a “nice” solution. One proceeds to derive
quantitative properties this solution enjoys. Here one looks for physical quantities that are conservative. The
second step is devoted to the construction of approximate solutions. These solutions must be sufficiently
smooth, yet they still satisfy the same a priori estimates obtained in the first step. Various versions of
regularization, discretization, or penalty are often employed. In the last step one shows that the sequence of
approximate solutions has a limit and this limit is a solution to the original model. Here one often faces the
question of how to improve weak convergence to strong convergence. Some types of compactness arguments
must be developed. In some cases, one must clarify the sense in which the limit satisfies the partial differential
equations and the boundary contitions involved due to possible existence of singularities and/or degeneracy.


